April 28, 2017

Planning Commission Chair
Town of Tunbridge
P.O. Box 6
Tunbridge, VT 05077

RE: Municipal Summary Worksheet - Energy

Tunbridge Planning Commission Chair

TRORC is pleased to have prepared and enclose a copy of the Municipal Summary Worksheet and maps for your town, which summarizes the type of data that is required to be in an “Enhanced Energy Plan” under the energy planning law passed last year and known as “Act 174”. As you are aware, writing an “Enhanced Energy Plan” and seeking a determination of energy compliance is optional for communities. If your town chooses to write one and meets the municipal standards set by the Department of Public Service, the town plan receives substantial deference in renewable energy generation Certificate of Public Good process. The data in the attached document provides analyses and targets derived from regional analyses and targets. Municipalities may choose to rely on these “municipalized” analyses and targets to meet the standards in this section.

Municipalities which elect to use the analysis and targets provided by the TRORC will be presumed to have met the Analysis and Targets standards. Alternatively, municipalities may develop their own custom analyses and targets or supplement the analyses and targets provided by the RPCs with specific local data; if this option is chosen, the analysis and targets must include all of the same components and meet the standards required of regions, as described in the standard checklist. Some of the numbers such as current electricity use by town will need to be updated when TRORC receives new data. The Summary worksheet, maps, and the excel worksheet that feeds the data into the summary sheet will be emailed out and can also be found on the TRORC website under your respective town page site. If you have any questions about the attached document or energy planning for your community please don’t hesitate to contact us.

Sincerely,

Christopher Damiani
Planner

cc: Peter G. Gregory, Executive Director, Todd Tyson, Town Energy Committee Chair, Michael Sacca, TRORC Commissioner, File

William B. Emmons, III, Chair
Peter G. Gregory, AICP, Executive Director
Municipal Template - Energy Data

The following is an explanation of the information displayed in the Municipal Template for Tunbridge.

The intent of the Municipal Template is to provide the municipality with data that can be used to ensure compliance with the requirements of Act 174 and “Enhanced Energy Planning” (24 V.S.A. 4352). The spreadsheet contains data that estimates current energy use and provides targets for future energy use across all sectors (transportation, heating, and electricity). It also sets a target for renewable energy generation within the municipality.

This data is meant to be a starting point for the municipality to begin planning its energy future and to talk about the changes that may need to occur within the municipality to ensure that local, regional and state energy goals are met. This includes the goal that 90% of all energy demand be met by renewable sources by 2050.

Estimates of current energy use consist primarily of data available from the American Community Survey (ACS), the Vermont Agency of Transportation (VTrans), the Vermont Department of Labor (DOL), and the Vermont Department of Public Service (DPS). Targets for future energy use are reliant upon the Long-range Energy Alternatives Planning (LEAP) analysis for the region completed by the Vermont Energy Investment Corporation (VEIC). Targets for future energy generation have come from the regional planning commission and DPS. Targets for both future energy use and energy generation have been generally developed using a “top down” method of disaggregating regional data to the municipal level. This should be kept in mind when reviewing the template. It is certainly possible to develop “bottom up” data. For those municipalities interested in that approach, please see the Department of Public Service’s Analysis and Targets Guidance.

There are some shortcomings and limitations associated the data used in the Municipal Template. For instance, assumptions used to create the LEAP analysis are slightly different than assumptions used to calculate current municipal energy use. Regardless, the targets established here show the direction in which change needs to occur to meet local, regional and state energy goals. It is important to remember that the targets established by LEAP represents only one way to achieve energy goals. There may several other similar pathways that a municipality may choose to take in order to meet the 90x50 goal.

Figure 1 - Data Sources

- American Community Survey (ACS)
- Vermont Department of Labor (DOL)
- Vermont Department of Public Service (DPS)
- Energy Information Administration (EIA)
- Efficiency Vermont (EVT)
- Long-range Energy Alternatives Planning (LEAP)
- Vermont Energy Investment Corporation (VEIC)
- Vermont Agency of Transportation (VTRANS)
Below is a worksheet by worksheet explanation of the Municipal Template spreadsheet:

1. Municipal Summary

The Municipal Summary worksheet summarizes all data that is required to be in the Municipal Plan if the plan is to meet the “determination” standards established by the Vermont Department of Public Service.

1A. Current Municipal Transportation Energy Use

<table>
<thead>
<tr>
<th>Transportation Data</th>
<th>Municipal Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of Vehicles (ACS 2011-2015)</td>
<td>988</td>
</tr>
<tr>
<td>Average Miles per Vehicle (VTrans)</td>
<td>11,356</td>
</tr>
<tr>
<td>Total Miles Traveled</td>
<td>11,219,728</td>
</tr>
<tr>
<td>Realized MPG (VTrans)</td>
<td>18.6</td>
</tr>
<tr>
<td>Total Gallons Use per Year</td>
<td>603,211</td>
</tr>
<tr>
<td>Transportation BTUs (Billion)</td>
<td>73</td>
</tr>
<tr>
<td>Average Cost per Gallon of Gasoline (RPC)</td>
<td>2</td>
</tr>
<tr>
<td>Gasoline Cost per Year</td>
<td>1,393,418</td>
</tr>
</tbody>
</table>

This table uses data from the American Community Survey (ACS) and Vermont Agency of Transportation (VTrans) to calculate current transportation energy use and energy costs.

1B. Current Municipal Residential Heating Energy Use

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>10</td>
<td>1.8%</td>
<td>1,070,400,000</td>
<td>1</td>
</tr>
<tr>
<td>Propane</td>
<td>119</td>
<td>21.6%</td>
<td>11,943,180,000</td>
<td>12</td>
</tr>
<tr>
<td>Electricity</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>124</td>
<td>22.5%</td>
<td>12,384,900,000</td>
<td>12</td>
</tr>
<tr>
<td>Coal</td>
<td>3</td>
<td>0.5%</td>
<td>321,120,000</td>
<td>0</td>
</tr>
<tr>
<td>Wood</td>
<td>289</td>
<td>52.5%</td>
<td>28,924,740,000</td>
<td>29</td>
</tr>
<tr>
<td>Solar</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>1.1%</td>
<td>642,240,000</td>
<td>1</td>
</tr>
<tr>
<td>No Fuel</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>551</td>
<td>100.0%</td>
<td>55,286,580,000</td>
<td>55</td>
</tr>
</tbody>
</table>

This table displays data from the ACS that estimates current municipal residential heating energy use.
1C. Current Municipal Commercial Energy Use

<table>
<thead>
<tr>
<th>Commercial Establishments in Municipality (VT DOL)</th>
<th>Estimated Thermal Energy BTUs per Commercial Establishment (in Billions) (VDPS)</th>
<th>Estimated Thermal Energy BTUs by Commercial Establishments in Municipality (in Billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal Commercial Energy Use</td>
<td>16</td>
<td>0.725</td>
</tr>
</tbody>
</table>

The table uses data available from the Vermont Department of Labor (VT DOL) and the Vermont Department of Public Service (DPS) to estimate current municipal commercial establishment energy use in the municipality.

1D. Current Electricity Use *

<table>
<thead>
<tr>
<th>Use Sector</th>
<th>Current Electricity Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential (kWh)</td>
<td>4,448,085</td>
</tr>
<tr>
<td>Commercial and Industrial (kWh)</td>
<td>2,433,716</td>
</tr>
<tr>
<td>Total (kWh)</td>
<td>6,881,801</td>
</tr>
</tbody>
</table>

*This table displays current electricity use within the municipality with data from the ACS, DPS, and VT DOL. More accurate data will be available soon from Efficiency Vermont (EVT).

1E. Residential Thermal Efficiency Targets

<table>
<thead>
<tr>
<th>Residential - Increased Efficiency and Conservation (% of municipal households to be weatherized)</th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
<td>67%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

This table displays targets for thermal efficiency for residential structures based on a methodology developed by DPS using data available from the regional Long-range Energy Alternatives Planning (LEAP) analysis and ACS. The data in this table represents the percentage of municipal households that will need to be weatherized in the target years.

1F. Commercial Thermal Efficiency Targets

<table>
<thead>
<tr>
<th>Commercial - Increased Efficiency and Conservation (% of commercial establishments to be weatherized)</th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
<td>9%</td>
<td>18%</td>
<td></td>
</tr>
</tbody>
</table>

This table shows the same information as Table 1E, but sets a target for commercial thermal efficiency. Information from the VT DOL is required to complete this target.
1G. Thermal Fuel Switching Targets (Residential and Commercial) - Wood Systems

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Efficient Wood Heat Systems (in units)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This target was calculated using data from LEAP and ACS. This table provides a target for new wood heating systems for residential and commercial structures in the municipality for each target year. Due to the LEAP model forecasting a large decrease in wood use resulting in a negative number of targets we have put zero in for this section. Towns are encouraged to use efficient wood heat.

1H. Thermal Fuel Switching Targets (Residential and Commercial) - Heat Pumps

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Heat Pumps (in units)</td>
<td>56</td>
<td>147</td>
<td>310</td>
</tr>
</tbody>
</table>

This table provides a target for new heat pump systems for residential and commercial structures in the municipality for each target year. This target was calculated using data from LEAP and ACS.

1I. Electricity Efficiency Targets

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Efficiency and Conservation</td>
<td>-0.6%</td>
<td>5.7%</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

Data in this table displays a target for increased electricity efficiency and conservation during the target years. These targets were developed using regional LEAP analysis. Towns are encouraged to consider increased efficiency targets.

1J. Use of Renewables - Transportation

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Energy Use - Transportation</td>
<td>9.6%</td>
<td>23.1%</td>
<td>90.3%</td>
</tr>
</tbody>
</table>

This data displays targets for the percentage of transportation energy use coming from renewable sources during each target year. This data was developed using the LEAP analysis.
1K. Use of Renewables - Heating

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Energy Use - Heating</td>
<td>49.3%</td>
<td>61.8%</td>
<td>92.9%</td>
</tr>
</tbody>
</table>

This data displays targets for the percentage of heating energy use coming from renewable sources during each target year. This data was developed using information from the LEAP analysis.

1L. Use of Renewables - Electricity

<table>
<thead>
<tr>
<th></th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Energy Use - Electricity (MWh)</td>
<td>7,209- 8,811</td>
</tr>
</tbody>
</table>

This data displays the target for electricity generation coming from renewable sources within the municipality for 2050. This data was developed using information from the regional planning commission and DPS. This data is the same as the data in Table 1Q.

1M. Transportation Fuel Switching Target - Electric Vehicles

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Vehicles</td>
<td>92</td>
<td>648</td>
<td>1,349</td>
</tr>
</tbody>
</table>

This table displays a target for switching from fossil fuel based vehicles (gasoline and diesel) to electric vehicles. This target is calculated on Worksheet 2 by using LEAP and ACS data.

1N. Transportation Fuel Switching Target - Biodiesel Vehicles

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel Vehicles</td>
<td>161</td>
<td>303</td>
<td>511</td>
</tr>
</tbody>
</table>

This table displays a target for switching from fossil fuel based vehicles to biodiesel-powered vehicles. This target is calculated on Worksheet 2 by using LEAP and ACS data.
10. Existing Renewable Generation

<table>
<thead>
<tr>
<th>Renewable Type</th>
<th>MW</th>
<th>MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td>0.11</td>
<td>135</td>
</tr>
<tr>
<td>Wind</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Hydro</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Biomass</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Total Existing Generation</td>
<td>0.11</td>
<td>135</td>
</tr>
</tbody>
</table>

Table 10 shows existing renewable generation in the municipality as of 2015, in MW and MWh, based on information available from the Vermont Department of Public Service.

1P. Renewable Generation Potential

<table>
<thead>
<tr>
<th>Renewable Type</th>
<th>MW</th>
<th>MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooftop Solar</td>
<td>1</td>
<td>774</td>
</tr>
<tr>
<td>Ground-mounted Solar</td>
<td>432</td>
<td>530,265</td>
</tr>
<tr>
<td>Wind</td>
<td>1,177</td>
<td>3,607,916</td>
</tr>
<tr>
<td>Hydro</td>
<td>0</td>
<td>1,272</td>
</tr>
<tr>
<td>Biomass and Methane</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Renewable Generation Potential</td>
<td>1,610</td>
<td>4,140,226</td>
</tr>
</tbody>
</table>

Renewable generation potential is based on mapping completed by the regional planning commission that is based on the Municipal Determination Standards and associated guidance documents developed by DPS. The renewable generation potential is expressed in MW and MWh by the type of renewable resource (solar, commercial wind, hydro, etc.).

1Q. Renewable Generation Target

<table>
<thead>
<tr>
<th></th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Renewable Generation Target (in MWh)</td>
<td>7,209- 8,811</td>
</tr>
</tbody>
</table>

Renewable generation target for municipalities was developed by the town’s population percentage within the region.

1R. Sufficient Land

<table>
<thead>
<tr>
<th></th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Sources</td>
<td>Y</td>
</tr>
<tr>
<td>Surplus of Generation</td>
<td>51588%</td>
</tr>
</tbody>
</table>

This table shows whether or not there is sufficient land in the municipality to meet the renewable generation targets based on the renewable generation potential in the municipality.
Existing Energy Generation

This map was created as part of a Regional Energy Planning Initiative being conducted by the Two Rivers-Ottawaquchee Regional Commission, and the Vermont Public Service Department.

Created: 2017

TUNBRIDGE
BIOMASS Energy Potential

This map was created as part of a Regional Energy Planning Initiative.
Created: 2017

TUNBRIDGE

Biomass Methodology: This map shows areas of potential for woody biomass production and harvest. The map also illustrates other conditions that may limit the feasibility of extensive harvesting of wood for energy use. These limiting factors are referred to as constraints. The map does not show areas where other types of biomass, such as biomass from grasses or agricultural residue, could be grown/harvested.

Constraints: Physical features or resources that make extensive harvesting infeasible are considered Level 1 constraints. Level 1 constraints include: FEMA floodways, river corridors, federal wilderness areas, rare and irreplaceable natural areas (RINAs), vernal pools, and class 1 and 2 wetlands. These areas have been removed and are not shown in any way on this map.
Hydroelectric Energy Potential

This map was created as part of a Regional Energy Planning Initiative.

Created: 2017

Hydroelectric Methodology: This map shows areas of resource potential for renewable energy generation from hydroelectric facilities. Sites identified are existing dams that could be developed for hydroelectric generation as well as active hydroelectric facilities. Information on existing hydroelectric facilities was obtained from the Vermont Dam Inventory and data on potential hydroelectric sites was obtained from a study conducted by Community Hydro in 2007.

Hydroelectric Constraint Description

* Rare and Irreplaceable Natural Areas (RINAs) are significant natural communities. They do not include the following rank descriptions: uncommon to common breeder in VT, common to very common in VT, historic in VT, not applicable, unrankable, unrankable breeding population, and extirpated.

Substations
Transmission Lines
Lakes/ponds
Rivers/streams
Operational Hydroelectric Facilities
< 50 kW Capacity
High Hazard with < 50 kW Capacity
> 50 kW Capacity
High Hazard with > 50 kW Capacity
Impaired Waters
Stressed Waters
Designated Outstanding Resource Waters
0-3
4-6
7-9
Rare and Irreplaceable Natural Areas (RINAs)
0
1
2
0.5
Miles

This map was created as part of a Regional Energy Planning Initiative.

Created: 2017

http://www.trorc.org
Solar Energy Potential

This map was created as part of a Regional Energy Planning Initiative.

Created: 2017

Solar

This map shows areas of potential electricity generation from solar energy. It includes areas with good access to solar radiation and also considers other conditions that may limit the feasibility of solar energy development. These limiting factors are referred to as constraints. Areas of prime solar potential exist where the natural conditions make development feasible and no constraints are present.

These maps are designed to initially identify areas and follow-up on-site work is required to verify the areas are feasible for projects. They are subject to revision and are NOT intended to green-light or fast-track projects.

DARK GREEN Prime: No Constraints within 1 mile 3 phase power
GREEN Prime: No Constraints no known or possible constraints present
ORANGE Constraints no known but at least one or more possible constraints
BLUE GREEN Raw potential with constraints

Known Constraints
- Vernal Pools (confirmed and unconfirmed layers)
- DEC River Corridor
- FEMA Special Flood Hazard Areas
- DEC Periodic Flood Plain Mitigation Area
- DEC Waterbody
- DEC River Corridor
- DEC Waterbody
- DEC Waterbo
Wind Energy Potential

This map was created as part of a Regional Energy Planning Initiative.

Created: 2017

Conserved Structures w/1ac buffer
Private Cons
Public Cons
Rivers/Streams
Transmission Lines
Substations

1000
Dugout RD
Hyde Mountain RD
Gifford Hill RD
1000

1000

BLUE GREEN Raw potential with constraints
ORANGE Constraints no known but at least one or more possible constraints
GREEN Prime: No Constraints no known or possible constraints present
DARK GREEN Prime: No Constraints within 1 mile 3 phase power fast-track projects.

They are subject to revision and are NOT intended to green-light or constraints. Areas of prime wind potential exist where the natural conditions make development feasible and no constraints are present.

These maps are designed to initially identify areas and follow-up on-site work is required to verify the areas are feasible for projects. They are subject to revision and are NOT intended to green-light or fast-track projects.

DARK GREEN Prime: No Constraints within 1 mile 3 phase power
GREEN Prime: No Constraints no known or possible constraints present
ORANGE Constraints no known but at least one or more possible constraints
BLUE GREEN Raw potential with constraints

Wind
This map shows areas of potential wind energy development. It includes areas with good access to wind resources and also considers other conditions that may limit the feasibility of wind energy development. These limiting factors are referred to as constraints. Areas of prime wind potential exist where the natural conditions make development feasible and no constraints are present.